Today
Dalton's Law of Partial
STR
Skip Chapters 9, 11, 12
Do parts of Chapter 10 Energy $\left.\begin{array}{ll}\text { Chapter } 13 & \text { Equilibrium }\end{array}\right\}$ today
Tomorrow chapter it acid/base

Dalton's Law of Partial Pressures
The pressure of a system is the sum of all of the partial pressures.

$$
P_{T}=\underbrace{P_{1}+P_{2}+P_{3}+\ldots+P_{n}}_{\text {Partial Pressures }}
$$

Ex
What is the pressure in a system with 0.62 atm of H_{2} and 0.92 atm of N_{2} ?

$$
\begin{aligned}
P_{T}=P_{H_{2}}+P_{N_{2}} & =0.62 \mathrm{~atm}+0.92 \mathrm{atam} \\
& =1.54 \mathrm{~atm} \text { total }
\end{aligned}
$$

$$
P_{T}=P_{1}+P_{2}+\ldots+P_{n}
$$

Same Container
Souse Volvine
Same Temp

$$
\begin{aligned}
& P V=n R T \\
& P=\frac{n R T}{V}
\end{aligned}
$$

$$
P_{T}=\frac{n_{1} R T}{V}+\frac{n_{2} R T}{V}+\ldots+\frac{n_{n} R T}{V}
$$

Sum of moles

$$
P_{T}=\frac{\left(n_{1}+n_{2}+\ldots+n_{n}\right) R T}{V}
$$

Ex
What is the pressure in a Container with a volume of 10.0 L filled with $1.62 \mathrm{~g} \mathrm{~N} \mathrm{~N}_{2}$ and $30.7 \mathrm{~g} \mathrm{H}_{2}$ if the temp is $25^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& P=? \\
& H_{2}=2.016 \mathrm{~g} / \mathrm{mole} \\
& V=10.0 \mathrm{~L} \\
& N_{2}=28.02 \mathrm{~g} / \mathrm{mde} \\
& n=30.7 \mathrm{~g} \mathrm{H}_{2} \text { \& } 1.62 \mathrm{~g} \mathrm{~N}< \\
& T=25^{\circ} \mathrm{C}+273.15=298.15 \mathrm{~K} \\
& R=0.0821 \frac{\mathrm{watm}}{\mathrm{molk}} \\
& n_{H_{2}}=30.7 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{moleH}_{2}}{2.016 \mathrm{~g} \mathrm{~Hz}}=15.228174 \\
& n_{\mathrm{N}_{2}}=1.62 \mathrm{gg}_{2} \times \frac{1 \mathrm{moleNl}_{2}}{28.02 \mathrm{~g}_{2}}=0.057815845
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\frac{P y}{y}=\frac{n R T}{x} \\
P=\frac{n R T}{V}=\frac{\left(n_{H_{2}}+n_{N_{2}}\right) R T}{V}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =37.348218 \mathrm{~atm}=37.3 \mathrm{~atm}
\end{aligned}
$$

Standard Temperature a Pressure STP Conditions

Standard temp $=273.15 \mathrm{k}$ or $0 . C^{\circ} \mathrm{C}$
Standard pressure $=1.00 \mathrm{~atm}$
$\sum x$
What is the volume of 3.62 moles of gas at STP?

$$
\begin{aligned}
& P=1.00 \mathrm{~atm} \\
& T=273.15 \mathrm{~K} \\
& n=3.62 \mathrm{~mole} \\
& V=? \\
& R=0.0821 \frac{\mathrm{Latm}}{\text { mole } K}
\end{aligned}
$$

$$
\begin{aligned}
P \underline{V} & =n R T \\
V & =\frac{n R T}{P}=\frac{(3.62 \text { moles })\left(0.0821 \frac{2-\tan)}{\operatorname{son})}(273.15 \mathrm{k})\right.}{1.00 \mathrm{~atm}} \\
& =81.180726 \mathrm{~L} \\
& =81.2 \mathrm{~L}
\end{aligned}
$$

εx
What is the volume of 1.00 mole gas at STP?

$$
\begin{aligned}
& P V=n R T \\
& V=\frac{n R T}{P}=\frac{(1.00 \text { mole })\left(0.082^{3} \frac{\text { atm }}{\operatorname{rolk})}\left(273.15^{\circ} \mathrm{K}\right)\right.}{(1.00 \mathrm{atur})} \\
&=22.425615^{5} \mathrm{~L} \\
& \text { Equality }=22.4 \mathrm{~L}
\end{aligned}
$$

εx
What is the volume of $32.6 \mathrm{~g} \mathrm{CH}_{4}$ at STP?

Road Map 1

$$
\begin{aligned}
& \frac{12.01}{4.016} \\
& \frac{16.026 \mathrm{~g} / \mathrm{mole}}{}
\end{aligned}
$$

$$
\begin{aligned}
& P=1.00 \mathrm{~atm} \\
& V=? \\
& \left.n=32.6 \mathrm{~g} \mathrm{CH}_{4} \times \frac{1{\text { mole } \mathrm{CH}_{4}}_{16.026 \mathrm{gCH}_{-}}^{n}=273.15 \mathrm{~K}}{1} \begin{array}{l}
16.0 \\
R=0.0821 \frac{\text { atm }}{\mathrm{MaK}}
\end{array}\right\} \quad P_{y}=n R T \\
& \hline
\end{aligned}
$$

Rood Map 2 1 mole gas $=22.4 \mathrm{~L}$ e STP

$$
\begin{aligned}
& \mathrm{gCH}_{4} \longrightarrow \text { mole } \mathrm{CH}_{4} \longrightarrow \mathrm{CH}_{3} \\
& 32.6 \mathrm{gCH} \times \frac{1 \text { mole CHH}_{4}}{16.026 \mathrm{gCH}_{4}} \times \frac{22.4 \mathrm{LCH}}{1 \text { mole } \mathrm{CH}_{4}}=45.5605955 \mathrm{~L} \\
& =45.6 \mathrm{~L}
\end{aligned}
$$

Ex
6.72 mole H_{2} are reacted with excess N_{2} at STP. How many Liters of NH_{3} are formed in the reaction?

Road Map

$$
\begin{aligned}
& \text { mole } \mathrm{H}_{2} \longrightarrow \text { mole } \mathrm{NH}_{3} \xrightarrow{\text { ind }}=\mathrm{LNH}_{3} \\
& \frac{3}{6.72 \text { mole }_{2}} \times \frac{\sum_{2 \times c a t}^{\text {mole } \mathrm{NH}_{3}}}{3 \text { mode } \mathrm{H}_{2}} \times \frac{22^{3} .4 \mathrm{~L}}{1 \text { mole } \mathrm{NH}_{3}}=100.352 \mathrm{LNH}_{3} \\
& =100 . \mathrm{LNH}_{3}
\end{aligned}
$$

Chapter 10
Energy of transitions (Phase Transitions)

How do we calculate the energy required to change the tamp of an object or the temp change for a given energy amount?
$\underline{\text { Specific Heat }}=C=\frac{\mathrm{Cal}}{\mathrm{g}^{\circ} \mathrm{C}}$
The amount of energy required to increase the temp of 1 g material by $1^{\circ} \mathrm{C}$

Energy units
$\mathrm{cal}=$ caloric $=$ The amount of energy required to raise $\lg \mathrm{H}_{2} \mathrm{O}$ by $1^{\circ} \mathrm{C}$
4.186 Joule $=1 \mathrm{cal}$

Food caloric $=1 \mathrm{Cal}_{\mathrm{a}}=1 \mathrm{kcal}$

$$
1 \text { Food Calorie }=1 \mathrm{Cal}=1 \mathrm{kcal}=1000 \mathrm{cal}
$$

Specific Heat $C=\frac{\mathrm{cal}}{9^{\circ} \mathrm{C}}$

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{c})} & =1.01 \mathrm{ca} / \mathrm{g}^{\mathrm{c}} \\
\mathrm{H}_{2} \mathrm{O}_{()} & =0.4897 \mathrm{cal} / \mathrm{gc} \\
\mathrm{Cu}_{(\mathrm{s})} & =0.09197 \mathrm{cal} / \mathrm{g}^{c} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Energy }=m C \Delta T=(g)\left(\frac{\text { cal }}{g c c}\right)(\cdot c) \\
& m=\text { mass }(g) \\
& c=\operatorname{cal} / g^{c} c
\end{aligned}
$$

$\Delta T=$ change in temperature $\left(T_{f}-T_{i}\right)$
εx
How much energy would be required to heat a 300. ML cup of tea from $25^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ if the $d_{H_{2} \mathrm{O}}=1.00 \mathrm{~g} / \mathrm{mL}$ and $C_{H O}=1.01 \mathrm{cal} / \mathrm{gc}$?

$$
\begin{aligned}
& \varepsilon=m c \Delta T \\
& \varepsilon=\text { ? } \\
& m=300 . \mathrm{mL} \times \frac{1.00 \mathrm{~g}}{1 \mathrm{~mL}}=300.9 \\
& C=1.01 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C} \\
& \Delta T=T_{f}-T_{i}=100^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}=75^{\circ} \mathrm{C} \\
& \varepsilon=\left(300 \cdot{ }_{i}^{3} \text { s) }\left(\frac{1.01 \text { (cal) }}{5 \%}\right)\binom{75}{2}\right. \\
& =22725 \mathrm{cal} \\
& =23000 \mathrm{cal}=23 \mathrm{kcal} \\
& 2.3 \times 10^{4} \mathrm{cal}
\end{aligned}
$$

Phase Transition Constants
cal $/ \mathrm{g} H_{f}$ Heat of fusion melting ar freeing

$$
\text { Solid } \underset{\text { freezing }}{\text { melting }} \text { liquid }
$$

$\mathrm{cal} / \mathrm{g} H_{v}$ Heat of Vaporization Busing or Condminng

$$
\text { lieu: } \underset{\text { condenses }}{\stackrel{\text { Boiling }}{ }} \text { gas }
$$

Ex
How much energy is required to change the temperature of $150 . \mathrm{mL} \mathrm{H}_{2} \mathrm{O}$ from liquid at $25^{\circ} \mathrm{C}$ to steam at $110^{\circ} \mathrm{C}$.
The $H_{f}=79.7 \mathrm{cal} / \mathrm{g} \quad H_{V}=540 \mathrm{cal} / \mathrm{g}$

$$
\begin{aligned}
& \varepsilon_{T}=m c \Delta T_{L}+m H_{V}+m c \Delta T_{g} \\
& m=150 . \mathrm{g} \\
& m=150 . \mathrm{g} \quad m=150 . \mathrm{g} \\
& C_{L}=1.01 \mathrm{cal} / \mathrm{gc} \quad H_{V}=540 . \mathrm{co} / \mathrm{g} \\
& C_{g}=0.4969 \mathrm{cal} / \mathrm{g} \cdot \mathrm{C} \\
& \Delta T_{L}=100 .-25=75^{\circ} \mathrm{C} \\
& \Delta T_{g}=110 .-100=10_{0}^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& \text { sigfigs? }
\end{aligned}
$$

$=93107.85 \mathrm{cal}$
$=93000 \mathrm{cal}$
$9.3 \times 10^{4} \mathrm{Cal}$
liguia $11 / 362.5 \mathrm{cal}$
Boiling 81000 cal

Burn from $1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ © $100^{\circ} \mathrm{C}$

$$
=\int_{25^{\circ} \mathrm{C}}^{1 \mathrm{CLL}} 75^{\circ} \mathrm{C}=\Delta T
$$

Energy imparted to hand

$$
\begin{aligned}
& \varepsilon=\operatorname{mc} \Delta T=(1.00 \mathrm{~g})\left(1.01 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{c}\right)\left(75^{\circ} \mathrm{C}\right) \\
&=75.75 \mathrm{cal}=76 \mathrm{cal} \\
& \mathrm{Bum}
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon=\text { MAT } T_{L}+m H_{V} \\
&=(1.00 \mathrm{~g})(1.01 \mathrm{cal} / \mathrm{g} \cdot)\left(75^{\circ} \mathrm{C}\right)+(1.00 \mathrm{~g})(540 \mathrm{ca} / \mathrm{g}) \\
&=7 \underline{5} .75+540 . \mathrm{cd} \\
&=615.75 \mathrm{cal} \\
&=616 \mathrm{cal} \text { Burn from Same } \\
& \text { amount of Steam. }
\end{aligned}
$$

